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Purpose: To develop an automatic interpretation system for uroflowmetry (UFM) results using machine learning (ML), a 
form of artificial intelligence (AI).
Methods: A prospectively collected 1,574 UFM results (1,031 males, 543 females) with voided volume>150 mL was labelled 
as normal, borderline, or abnormal by 3 urologists. If the 3 experts disagreed, the majority decision was accepted. Abnormality 
was defined as a condition in which a urologist judges from the UFM results that further evaluation is required and that the 
patient should visit a urology clinic. To develop the optimal automatic interpretation system, we applied 4 ML algorithms and 
2 deep learning (DL) algorithms. ML models were trained with all UFM parameters. DL models were trained to digitally ana-
lyze 2-dimensional images of UFM curves.
Results: The automatic interpretation algorithm achieved a maximum accuracy of 88.9% in males and 90.8% in females when 
using 6 parameters: voided volume, maximum flow rate, time to maximal flow rate, average flow rate, flow time, and voiding 
time. In females, the DL models showed a dramatic improvement in accuracy over the other models, reaching 95.4% accuracy 
in the convolutional neural network model. The performance of the DL models in clinical discrimination was outstanding in 
both genders, with an area under the curve of up to 0.957 in males and 0.974 in females.
Conclusions: We developed an automatic interpretation algorithm for UFM results by training AI models using 6 key param-
eters and the shape of the curve; this algorithm agreed closely with the decisions of urology specialists.
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INTRODUCTION

Uroflowmetry (UFM) is a simple test that measures the urine 
stream in volume per unit time [1]. The main advantage of 
UFM is that it is non-invasive and relatively inexpensive [2,3]. 
Therefore, it is considered an indispensable, first-line screening 
method for most patients with suspected lower urinary tract 
dysfunction [2]. Most commercially available office uroflowme-
ters are based on weight transducers, which measure the voided 
volume (VV) and calculate the flow rate by detecting the differ-
ence over time [4]. These flowmeters provide both a graphical 
presentation of the uroflow and a range of electronically read 
parameters [4].

To obtain representative results in UFM, adequate privacy 
should be provided, and patients should be asked to void when 
they feel a “normal” desire to do so [2]. However, UFM is usu-
ally carried out on an outpatient basis, in specified procedure 
areas without basic privacy, and often involves having the per-
son urinate into the uroflowmeter at a predetermined time [5]. 
This process is unnatural and requires “on-demand” voiding 
often with either low or very high bladder filling, which com-
promises the results [5]. It has therefore been recommended 
that UFM should be repeated, which is time-consuming and 
costly for both patients and health care providers [6].

Sound-based UFM represents a new approach to recording 
urinary flow patterns and measuring urinary flow parameters 
in a non-invasive manner by analysing the sound generated by 
a stream of urine striking the water surface in the toilet bowl. 
We developed a novel mobile acoustic UFM that works as a 
microphone built into a smartphone. In a previous study, re-
searchers developed a device called sonouroflow with a similar 
concept [7]. At the technical level, sonouroflow processed each 
voiding session as a whole and analyzed only the sound pres-
sure level. However, our acoustic UFM method analyzes a ses-
sion in detail by dividing it into hundreds of sections. In addi-
tion, our method estimates variables and analyzes data by ap-
plying various signal processing methods in the time domain 
and frequency domain as well as the sound pressure level. Clin-
ical trials confirmed that our device was non-inferior in perfor-
mance to a conventional UFM. We released the developed 
acoustic UFM program as an application through the App Store 
and Google Play.

Patients can use our acoustic UFM application for free with 
only a smartphone. Using this program, they can perform 
UFM tests in any location (at home, at work, on vacation, or 

anywhere else) at any time just as comfortably as they would 
void in daily life. However, even if users obtain accurate and 
representative measurements, it is difficult to judge whether the 
results are normal or whether they reflect abnormal conditions 
that require urological management [8]. To identify abnormal 
results and recommend that those users visit a urologic clinic, 
we aimed to develop an automatic interpretation system for 
UFM results by applying machine learning (ML) and deep 
learning (DL), 2 subsets of artificial intelligence (AI).

MATERIALS AND METHODS

Patients
With the approval of the Seoul National University Bundang 
Hospital Institutional Review Board (IRB No.: B-1912-583-
001), 3,000 patients over 20 years of age who were scheduled to 
undergo UFM in the outpatient urology clinic based on clinical 
judgement were prospectively included in this study from Janu-
ary to December 2019. Before being included as subjects, pa-
tients agreed to join this study of their own volition and com-
pleted an written informed consent form. This study was con-
ducted in accordance with the ethical principles stated in the 
Declaration of Helsinki. All patients with incomplete UFM re-
sults were excluded. Patients with a UFM volume of less than 
150 mL were also excluded.

Using a web-based reading tool, 3 urologists read the UFM 
measurements independently. The participants included a se-
nior urologist with more than 10 years of clinical experience, a 
urologist with more than 5 years of clinical experience, and a 
junior urologist with less than 5 years of experience. The 3 in-
dependent researchers classified each result as normal, border-
line, or abnormal by visually inspecting the pattern of the flow 
curve and evaluating the relevant quantitative parameters of 
UFM as defined by the International Continence Society (ICS): 
voiding time (VT), flow time (FT), time to maximum flow rate 
(TQmax), maximum flow rate (Qmax), average flow rate (Qavg), 
and VV.

Abnormality was defined as a condition in which a urologist 
judged from the UFM results that further evaluation was re-
quired and that the patient should visit a urologic clinic.

ML algorithms
To develop the optimal automatic interpretation system, we ap-
plied 4 ML algorithms (logistic regression, decision tree, sup-
port vector machine, and random forest algorithms) and 2 DL 
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algorithms (a convolutional neural network [CNN] and a re-
current neural network [RNN]).

ML models were trained with all parameters of UFM results. 
DL models were trained to digitally analyze 2-dimensional (2D) 
images of the UFM curve. DL modelling was performed by 
converting the 2D image of the UFM curve into the time-series 
value of the instantaneous flow rate at time “t.”
Through supervised ML algorithms, the UFM results of a ran-
domly selected 80% of cases per gender were selected as a train-
ing set, and algorithms were developed to classify them into 3 
groups: normal, borderline, and abnormal. The developed algo-
rithms were validated externally with a test set consisting of the 
remaining 20% of results to evaluate the consistency and dis-
crimination of the model.

Statistics
The evaluation variables are represented by descriptive statis-
tics. The interobserver consistency of the investigators’ readings 
was assessed in terms of the interclass correlation coefficients 
by calculating Cronbach alpha. Additionally, in order to deter-
mine the extent of agreement between the investigators (intrao-
bserver agreement), Cohen kappa values were calculated [9]. A 
scatter plot matrix was used to visualize relationships between 
pairs of variables in a grid format. Each scatter plot shows the 
correlation between 2 variables. In addition, the kernel density 
estimation curve for each variable was drawn, and different co-
lours were displayed for each group to provide additional infor-
mation.

The consistency between the clinical decision and the inter-
pretation by the ML algorithm was calculated as the accuracy, 
defined as the percentage of correct interpretations out of the 
total number of results. The area under the receiver operating 
characteristic curve was used to assess the discrimination per-
formance of the model as a summary performance measure 
[10].

RESULTS

A total of 3,741 UFM cases were screened, and 1,269 tests were 
excluded according to exclusion criteria. After excluding 894 
cases with a VV of less than 150 mL, we ultimately analyze 
1,574 cases (1,031 in males and 543 in females).

The mean ages of the male and female patients were 66.5± 
10.5 years and 63.6±12.1 years, respectively. The UFM results 
of male cases were labelled normal in 521 cases (50.5%) and ab-

normal in 232 cases (22.4%), with unanimous decisions in 
51.4% of cases. For female cases, 420 (77.3%) were normal and 
60 (11.0%) were abnormal, with a 70.5% unanimity rate.

The internal consistency of the UFM readings was high 
(Cronbach alpha 0.88 [0.87–0.89] in males and 0.85 [0.83–0.86] in 
females). Moderate interobserver agreement was reached with re-
gard to the normalcy of the UFM curve, with a kappa value of 
0.43–0.55 in male cases and 0.39-0.56 in female cases.

Regarding the correlation between continuous variables as 
observed from the scatter plot matrix, VV and Qavg were posi-
tively correlated, and a negative correlation of Qmax with VT 
or FT was observed (Fig. 1). In addition, in the scatter plots 
with different colours between groups, it was possible to ob-
serve a clear distribution difference between the normal and 
abnormal groups.

For ML, 824 male and 338 female cases (80% of the data) 
were used as the training set, and 207 male and 82 female cases 
(the remaining 20% of the data) were used as the test set. When 
ML with logistic regression was performed with only one fea-
ture, 57.0%–83.8% accuracy was achieved. The index with the 
highest accuracy as a single variable was the Qmax value. When 
2 features were used, 71.1%–85.2% accuracy was achieved. The 
variables that showed the best accuracy in a 2-feature model 
were Qmax and VV. When the number of features was in-
creased one by one from 4 (VV, Qmax, TQmax, and Qavg) to 7 
(VV, Qmax, TQmax, Qavg, VT, FT, and DT), the accuracy pla-
teaued, increasing only from 86.5% to 88.9%. The interpreta-
tion algorithm showed the best accuracy when using a combi-
nation of 6 parameters: VV, Qmax, TQmax, Qavg, VT, and FT 
(Fig. 2).

In male cases, the interpretation accuracy of the ML models 
was 87.4%–88.9%, with the random forest model showing the 
highest accuracy. In the DL models, which were trained using 
the shape of the UFM curve, the accuracy slightly increased, 
reaching 0.918 for the CNN model and 0.908 for the RNN 
model. In female cases, the interpretation accuracy of the ML 
models was 87.2%–90.8%, with the random forest and logistic 
regression models tied for the highest accuracy. Interestingly, in 
the female cases, the DL models showed a dramatic improve-
ment in accuracy over the other models, with the CNN model 
achieving 95.4% and the RNN model achieving 94.5% accura-
cy. The performance in clinical discrimination was outstanding 
in both genders, with a maximum area under the curve of 0.957 
in males and 0.974 in females (Fig. 3).
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DISCUSSION

We developed an AI algorithm that automatically interprets the 
results of UFM using 6 key parameters and the shape of the 
curve; we confirmed that the results generated by this algo-

rithm were in very close agreement with the decisions of urolo-
gy specialists. There was no significant difference in consistency 
according to the ML method in male cases, but in female cases, 
the accuracy increased dramatically when DL models were 
added to recognize the shape of the UFM curve. To the best of 
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our knowledge, this is the first study to develop an automatic 
UFM reading algorithm using AI models.

For female cases, there was a dramatic increase in accuracy 
when DL models were added to recognize the 2D images of the 
UFM curve. However, when male cases were analyzed using 
DL models, there was no significant change in accuracy. One 

plausible explanation is that the 6 numerical parameters ex-
tracted from the UFM curve are sufficient to reflect the patient’s 
condition in male cases; on the other hand, in female patients, 
the parameters of UFM may be insufficient, and the shape of 
the curve must be referenced when reading UFM results. Few 
studies on the diagnostic application of UFM are available in 
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women, and there is no clarity regarding reference values, their 
variations, and which factors influence these values [11]. Par-
ticular caution is recommended when interpreting the UFM 
results of female patients [12]. Further research may be needed 
to determine whether there are better numerical parameters 
and/or any unknown features that can be used for the interpre-
tation of female UFM results.

Several studies have examined the limitations of clinic-based 
UFM [13,14]. The difficulty of providing a space with adequate 
privacy to relax and the demand for the patient to void without 
the normal desire to void are unrepresentative of daily voiding 
patterns, and it is also not feasible to repeat measurements in 
the clinic due to time constraints [15]. A potential solution to 

Fig. 2. Change in accuracy of an automatic interpretation system trained with logistic regression methods for uroflowmetry results as 
the number of available parameters increases. (A) Male patients. (B) Female patients. VV, voided volume; Qavg, average flow rate; 
Qmax, maximum flow rate; TQmax, time to maximum flow rate; VT, voiding time; FT, flow time.
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this phenomenon of “bashful bladder” under forced conditions 
is for the patient to measure his or her own urinary flow at 
home [15]. Several home UFM techniques have been intro-
duced, such as timing methods, funnel devices, and electronic 
devices [16-18]. However, these techniques also do not provide 
a complete alternative due to the economic barrier imposed by 
the high cost of electronic devices, as well as the possibility of in-
accuracy when patients calculate the values manually. For these 
reasons, the best option to date is our sound-based UFM system 
that works with a smartphone.

Our mobile app-based acoustic UFM is an easy-to-use, non-
invasive method to estimate a patient’s urodynamics simply by 
recording sounds with a smartphone during voiding. A novel 
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Fig. 3. Analysis of area under the receiver operating characteristic curve (AUC) to assess the performance of automatic interpretation 
systems according to machine learning methods. (A) Male patients. (B) Female patients. CNN, convolutional neural network; RNN, 
recurrent neural network.
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acoustic AI engine is applied to suppress sound artifacts, offset 
environmental characteristics, and improve prediction accura-
cy. This acoustic UFM system was built from 35,000 sessions of 
voiding data from 4,700 people in various real acoustic envi-
ronments. It has already been validated clinically and is listed 
by the U.S. Food and Drug Administration as a uroflowmeter 
and medical device data system. Our mobile acoustic UFM sys-
tem can be used to check and monitor the rate and volume of 
urinary flow in daily, natural settings. It can also track longitu-
dinal trends and includes an automatic voiding diary for daily 
usage. This smartphone application might improve the short-
comings of current voiding diaries, such as incomplete records 
with missing values and low compliance [19]. In this study, we 
developed an automatic reading algorithm using ML to carry 
out mobile acoustic UFM.

The common disadvantage of all home UFM techniques, in-
cluding the sound-based UFM we developed, is the lack of 
measurement of postvoid residual (PVR). Although the ICS 
recommends reporting PVR in UFM results, the key parame-
ters of UFM are Qmax, VV, and flow pattern [2,20]. However, 
the most relevant parameter related to bladder outlet obstruc-
tion is Qmax [21]. Rather than having low clinical significance, 
PVR may be considered an independent parameter not includ-
ed in UFM, hence the term “UFM with PVR.” If PVR is includ-
ed, it can greatly increase the potential clinical impact, but 
UFM itself is sufficient as a screening test. An abnormal result 
from home UFM would presumably lead to a subsequent clinic 

visit, where stand-alone measurement of PVR could be ob-
tained after normal voiding [15].

In this study, the interobserver reliability of UFM readings by 
the 3 researchers was relatively low. Other studies have also re-
ported on the variability of interpretation [22]. In particular, the 
degree of agreement in the diagnosis of bladder outlet obstruc-
tion is very poor, at K=0.20 [23]. Urologists’ degree of experi-
ence may be the most important factor in these differences [24]. 
Since there are no absolute values defining normal limits, the 
interpretation of UFM results must be subjective and empirical 
[25,26]. For this reason, it is believed that the only way to auto-
matically read UFM results is to use the opinions of clinical ex-
perts as a reference and attempt to replicate them. Although the 
degree of consensus among clinical experts’ opinions is not 
high, the agreement between AI readings and majority expert 
readings was excellent, at 95%. Urologists label UFM results 
mainly by reviewing the shape of UFM curves, but the numeri-
cal values of the UFM parameters actually represent the mean-
ing of the shape quite well.

In conclusions, we developed an AI system that applies 4 ML 
and 2 DL algorithms and automatically interprets the results of 
UFM using 6 key parameters and the shape of the curve, in this 
study. We confirmed that the agreement between the automat-
ed readings and the judgement of urology specialists was very 
high. In females, the accuracy of the readings increased dra-
matically when DL models were added to recognize the shape 
of the UFM curve. Further research may be needed to deter-
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mine whether there are currently unrecognized parameters of 
the shape of the UFM curve that would improve the interpreta-
tion of UFM results.
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